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Abstract-The governing equation of the coupled mean fields induced in the heterogeneous linear ther
moelastic media was derived. Discussion was made on the nonlocality of the governing equation. The
relation of the mean fields was investigated in the uncoupled case when the acceleration term was
disregarded.

I. INTRODUCTION

This study is devoted to a statistical formulation of the coupled mean fields induced in the
heterogeneous linear thermoelastic media.

Many statistical researches have been conducted on the heterogeneous elastic material. The
mean fields induced in the material and the effective elastic moduli tensor of the material were
fully investigated by means of the self-consistent method [1-3] or the perturbation method [4-7].
The bounds for the elastic moduli tensor were also examined with the variational principles [8
10]. The results of these investigations made a great contribution to the study on the mechanical
behavior of the polycrystalline materials, the composite materials and the multi-phase materials,
etc. The investigation from the statistical point of view was also carried out in such fields as the
electromagnetism, the dielectric elasticity, the plasticity and the turbulence problems, etc. The
works up to this time on the statistical continuum mechanics were summarized in the review
articles by Hashin[ll] and Beran[l2] and the monographs by Beran[13] and Kroner [l4].

Beran and McCoy [5, 15] derived a governing equation of the mean field induced in the
heterogeneous elastic material in terms of Green's function. They revealed in the paper that the
mean field was governed by the nonlocal equation though each constituent had the local
property. They also indicated that their statistical formulation had a close resemblance to a
linear version of the first strain-gradient theory [16].

In this paper we applied their method of analysis to the thermomechanical study on the
heterogeneous linear thermoelastic material. In Section 2 the deterministic formulation was
briefly discussed on the coupled linear thermoelastic problem in terms of Green's function
method. Section 3 was devoted to the derivation of the governing equation of the mean fields
induced in the material. In the derivation, the result obtained in Section 2 was fully used. The
reduction to the uncoupled case was examined in Section 4. The relation of the mean fields was
derived when the acceleration term was disregarded.

2. FORMULATION OF DETERMINISTIC COUPLED THERMOELASTIC PROBLEM

In this section, we make a brief discussion on a deterministic formulation of the coupled
thermoelastic analysis by means of Green's function method which was proposed by the same
authors [17]. The result will fully be used in the statistical formulation in the next section.

The field equation of the coupled linear thermoelastic problem is written as [18, 19],

po + div[C: grad u + 88] = - F
(2.1)

A: grad grad 8 + cO = - 8: grad Ii - H,

where u and () represent the displacement and the temperature, respectively. The material
constants p, C and A mean the density, the elastic moduli tensor and the heat conductivity
tensor, respectively, while c and 8 are the material constants which relate to the specific heat
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and the coefficient of thermal expansion. respectively. The functions F and H stand for the
body force and the heat source term which are the prescribed functions of position and time.
The operators div and grad show the divergence and the gradient with respect to the spatial
coordinate. respectively. The colon indicates the summation over the repeated two indices. i.e.
(A: B1 ..EA, ' , ii Bii ' . , The superimposed dot denotes the material time derivative. which is equal
to the partial time derivative in this study because the linear theory i:; treated.

We assume that the material constants p, C, 9, A. and c are independent on both time and
position. The discussion is limited to the infinite thermoelastic material subjected to the
homogeneous boundary conditions. This is the reason why no mention is made on the boundary
conditions in this section.

The solutions of eqn (2.1) are formally obtained by means of Green's function method. The
results are

(2.2)

and

(2.3)

where Green's functions K(f, fl) and G(f. fl) are the solutions of the following equations:

(2.4)

and

(2.5)

In the derivation, the abbreviations fl=(XI, tl) and dfl=dxldtl; (i: no sum) are used, where dXi

means the element of volume. The notations divl and grad i mean the divergence and the
gradient operators with respect to the spatial coordinate Xi, respectively. Throughout this study.
we understand that the time derivative of the two-point function is evaluated with respect to the
time constituting the first argument. The integrals are estimated over the region E3 x R, where
E3 and R mean the three-dimensional infinite space and [0, 00), respectively. The function
8(f - fl) shows 8(x - XI) 8(( - (,). where 8(·) means the Dirac delta function. The tensor I
stands for the unit tensor. The operator' indicates the inner product, i.e. [A·B] ... :: A . .. i

Bi ••••

It should be noted that if it is necessary, the integral must be estimated in the sense of
Cauchy's principal value integral[5, 20, 21].

The problem to seek K in eqn (2.4) is called the Stokes' problem, and the solution for an
infinite isotropic elastic material is available [22]. One can also expect the solution G in eqn (2.5)
for an infinite isotropic body [fS].

By substituting 8 in eqn (2.3) into eqn (2.2) and carrying out the slight manipulation, we
obtain the following integral equation in E(~F-grad u(~):

The tensor functions a(f. fl), f(f) and b(f) are defined as,

a(~. fl):: grad A(~, ~I)® 9

f(i) a Lgrad K(f, ~1)'F(il)dil
II

b(i) 5'Lgrad A(~, il) H(~I)d€,
It

(2.6)

(2.7)
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together with

where ® represents the tensor product. The solution of eqn (2.6) yields

where f(t', t'1) is the resolvent kernel of eqn (2.6)[20, 21]. Equation (2.9) is rewritten as
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(2.8)

(2.9)

(2.10)

To derive eqn (2.10), use is made of eqn (2.7b and the tensors O,(t', t',) and OH(t', t',) are
defined as,

O,(t', t'l) == grad K(t', t',) + L2 ret', t'2): grad2K(t'2' t',) dt'2

OH(t', t',) == grad A(t', t'.) +ff2 ret', t'2): grad2A(t'2' t',) dt'2'
(2.11)

Substitution of eqn (2.10) into eqn (2.3) and then of eqn (2.3) into eqn (2.2) gives the final form
of the solutions for the coupled linear thermoelastic problem,

(2.12)

and

where we have introduced the following tensor functions:

(2.13)

and

O,{t', t',)= K(t', t',) +ff2 [A(t', t'2) ® 8]: O,{t'2' t',)] dt'2

OH(t', t',) == A(t', t',) + ff2 [A(t', t'2) ® 8]: OH(t'2, t',)] dt'2

A,(t', t'.) == ff2 G(t', t'2) 8: O,(t'2' t'.) dt'2

AH(t', t',) == G(t', t'2) +ff2 G(t', t'2) 9: OH(t'2, t'.) dt'2.

(2.14)

(2.15)

The problem can be reduced to the uncoupled one if the condition

8: grad 1i = 0 (2.16)

holds. We can show that under the condition (2.16), eqns (2.14) and (2.15) are simplified to

(2.17)

3. GOVERNING EQUATION OF COUPLED MEAN FIELDS

The governing equation of the mean fields induced in the infinite heterogeneous ther
moelastic material is examined in this section.
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The fundamental equation is eqn (2.1). However, in this section, the material constants p, C,
9, A and c are assumed to be the statistically homogeneous random functions of the position.
and to have mutually no correlations. For simplicity, we further assume that the body force, the
heat source term and the prescribed boundary conditions behave in a non-random fashion.

Now it is postulated that the material constants can be expressed as the summation of the
mean value and the deviation about it[5], i.e.

p(x) = (p(x» + p '(x),

9(x) = (8(x» +9'(x),

C(x) = (C(x» +C'(x),

A(x) = (A(x» + A'(x), O.\)

c(x) = (c(x» + c'(x),

where the notations ( ) and' indicate the ensemble average and the deviation from the average,
respectively. The assumption of the statistically homogeneity implies the ensemble average to
be independent of the position.

The random property of the material constants makes the displacement and the temperature
fluctuate randomly. They are, thus, decomposed as

u(~) = (uW) + u'W, ow = (OW) + O'(~). (3.2)

It should be noted that u and 0 are the functions of both the position and the time, and that
mean values (u(~» and (O(~) are not constants.

In order to get the governing equation of (u) and (0), we substitute eqns (3.1) and (3.2) into
eqn (2.1) and take average. The result is

(p)(ii) + div [(C): grad (u) + (9)(0)] + (p'ii') + div [(C': grad u') + (9'0')] = - F.

(A): grad grad (0) + (c) (9) + (9): grad (ti) + (A ': grad grad 0') + (c'O') + (8': grad ti') = - H.

The equation for the deviations is lead from eqn (3.3) and (2.1) to

(p) ii' + p'(ii) + (l- P) (p'ii') + div [(C): grad u' + C': grad (u) + (l- P)(C': grad u')

+(9)0' + 8'(0) + (l - P) (9'0')] = 0,

(A): grad grad 0' + A': grad grad (0) + (1 - P) (A ': grad grad 0') + (c) 0' + c' (8)

+ (l - P) (c' 8') + (9): grad ti' + 9': grad (ti) + (l - P) (8': grad ti') = 0,

0.3)

0.4)

where we have used the operators I and P defined as [5, 14] I(A) == A, peA) == (A).
To complete eqn (3.3) for the mean fields (u) and (0), one must express the terms which

include the deviations in terms of (u) and (0). For that purpose, we first solve eqn (3.4) in u' and
0' by assuming that the iteration procedure is applicable to this problem. We set

00

u'W = L u,(n) (~),
n=1

x

O'W = L O,(n) W
n=l

(3.5)

with the postulation of the convergence of the series. Equation (4.3) is satisfied if the following
equations hold for u,(n)(~) and o,(n)(~):

(p) ii,(1) + div [(C): grad u,(1) + (8)0,(1)] = -div [C': grad (0)+ 8'(9)] - p'(ii),

and

(p) ii,(n) + div [(C): grad u,(n J + (8)9,(n)]

= - (l- P) [div (e': grad u,(n-I) + 9~9,(n-1) + p'ii,(n-1)]; (n > 1),

(A): grad grad ir(1) + (c) 8,(1) + (8): grad ti'(1) = - c'(8) - A': grad grad (9) - 8': grad (0),

(3.6)
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(A): grad grad 8,(n) + (c)9,(n) + (9): grad Ii,(n) = - (1 - P) [A': grad grad 8,(n-l)

+ c' 9,(n-1) + 9': grad Ii,(n-I)]; (n > 1). (3.7)

It is easy to give the solutions in eqns (3.6) and (3.7), if we make use of the result in the
preceding section. For example, u,(I)(g) and 8'(I)(g) in eqns (3.6)1 and (3.7)1 are obtained by
taking the following replacement in eqn (2.1):

and

F.... div [C': grad (u) + 8'(8)] + p'(ii)

H .... c'(9)+ A': grad grad (8)+8': grad (Ii).

(3.8)

(3.9)

The same procedure can be applied in seeking the solutions u,(n)(t), 8,(n)(g); (n > 1). The results
read,

u,(I)(g) = 1[OP{~, glHdiv l {C'(XI): gradl (u(g,» + 9'(x,) (8(gl»} + P'(XI) (ii(g,»]
E,

+ OH(~' ~,) [A '(XI): grad' gradl(8(gl» + C'(XI) (8(g,» + 8'(xI): grad' (Ii(~l)m d~j,

U'ln)(g) = (/ - P)1nOF(g, gtHdivl{C'(xl): grad l u,(n-I)(~d + 8'(Xl)8,(n-l)(g\)} + p'(xl)ii,(n-1)(tl)]
€I

+ OH(~, gl) [A '(XI): gradl grad 1 8,(n-I)(~I)

+C'(XI) 8"n-l)(g,) + 8'(Xl): grad1 iJ,n-Il(EI))) dEl; (n > 1),

and

8,(I)(g) = i DAF(t, E1Hdiv 1 {C'(XI): grad l (u(td) + 9'(xI) (8(EI))}+ P'(XI) (ii(gl))J
€,

+ AH(g, tl) [A '(XI): gradl grad1 (8(gIl) + C'(Xl) (9(gl» + 8'(xd: grad1 (U(~I»JD d~j,

(:l'(n)(g) = (I - P)1[AF(g, glHdiv l {C'(Xl): grad' u,(n-I)(gl) + 8'(xl) 8,(n-l)(gl)} + P'(XI) ii'ln-I)(gl)]
€I

+ AH(~, ~I) [A'(xI): gradl 8,(n-l)(tl)

+ C'(Xl) 8,(n-l)(gl) + 8'(Xl): grad 1 u,(n-l)(tl)]J dtl; (n > 1), (3.11)

where the tensors OF, OH, AFand AH are defined by eqns (2.14) and (2.15). It should be noted
that in this case the material constants are replaced by the mean values as indicated in eqn (3.8).
Green's functions K(g, gl) and G(t, tl) are, therefore, determined for the body with the
material constants (p), (C), etc.

Now we can estimate (p'ii'), (C': grad u"), (8'8'), (A': grad grad 8'), (c'8') and (8'; grad u')
by making use of the deviations u,(n) and 8,(n) in eqns (3.10) and (3.11). Equations (3.5)\ leads to

(3.12)

where the functionals KX(t); (K = I, II . .. VI) are defined by

KX(€) == ( KIll,(€, €IHii(gl» dIll + (KIll2(g, gl)'ii(~\» d~1
lEI h,
+ ( K~I(g,gl):gradl(u(~I»dIl+ LKQ.h(~,td:gradl(u(~I»dg\

lEI ~

+ f K(2:I(g, ~I) (8(~1» dI I + f K(2:i~, ~I) (8(~1» dtlh, lEI
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+LKTJM, ~I): gradl grad! (9(~1) dI I +1KTJ2(~' ~l): grad! grad l (9(~1) d~1
:£1 f\

+LK~M, ~l) (8(~!) dI I+ r K~2(~' ~!) (8(~1) d~! +LKlSM, ~!): gradl (U(~I) dI,
:£1 Jfl :£1

+LKlS2(~' ~I): grad! (u(~d) d~! (3.13)
fl

The functionals IX, KX; (K = II, III) and KX; (K = IV, V, VI) are the tensors of the first, the
second and the zeroth rank, respectively. The functions K~b'" etc., which have the cor
responding ranks estimated from eqn (3.13), will be defined later. They are determined by
Green's functions and the infinite set of the correlation functions of the material constants.
Their explicit forms are so complicated that we write down in this paper the only ones which
contain the correlation functions of the same material constant in first two terms. Henceforth, we
call these functions as the primary functions.

The tensor function l~h(~, ~d is the only primary function in eqn (3.12). Its first few terms
are as follows:

1~2(~, ~l) =[Orl~, ~I) .~2)(X, XI)>> + IJ
E2
Orl~, ~2)'Orl~2' ~I) .~I(X, X2, x!) d~2J + . . . (3.14)

Here, we have introduced the following notation for the correlation functions:

(3.15)

where A represents the one in the set (p, C, 8, A., c).
The term (C': grad n') can be calculated by substituting eqn (3.10) into

00

(C': grad n') = 2: (C': grad n,(nl)
n=t

and carrying out a lengthy manipulation;

(C': grad n') =llXW,

where the primary functions in llX(~) are

(3.16)

ll~M, ~l) == [grad Orl~, ~d @n(uI)4.g1(x,XI)>>

+Ii [grad Orl~, ~2) @ n(u2)]4[(grad2Orl~2' ~l)
:£2

@n(ud)4 .gl(X, X2, Xl)] dI2-1 grad2grad Orl~, ~2)
f2

4 [(grad2Orl~2, ~d @n(ul))4 .g)(X,X2, XI)] d~2J+ .. · (3.17)

and

1l~2(~' ~l) =(gradIgrad Orl~, ~t) 4 .g)(x, Xt)n+I-L(grad OF(~' ~2) @n(u2)
:£2

4 [grad! grad2Orl~2' ~l) 4 .gl(X, X2, XI)] dI2

+ J€l grad2grad OF(~' ~2) 4 [grad! grad2Orl~2' ~l) 4 .g)(x, X2, Xt)] d~2J+ ... (3.18)

The notation Ui in the above equations means the spatial coordinate Xi on the boundary surface.
The vector n(u;) stands for the outward unit normal at the boundary point with the coordinate
U;. The abbreviations Ii == (Ui, ti) and dI; == du; dt j; (i: no sum) are adopted, where dUj means
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the element of surface. The operator 4 represents the summation over the repeated four
indices, i.e. [A 4 B1 .. mn = A. .. ijkl B. .. ikjlmn'

As in the case of the volume integral, the surface integral induced by Green's theorem
should be evaluated in the sense of Cauchy's principal value integral[5, 20, 21, 23].

The derivation of eqns (3.16), (3.17) and (3.18) are somewhat complicated. In Appendix, we
illustrate the process to calculate (C': grad 0,(2».

We can also estimate (8' in, (A': grad grad 0'), (c'O') and (e': grad Ii') as follows. It follows
from eqns (3.5) and (3.11) that

(8'0') = /IIX(~). (}.l9)

The primary functions in llIX(~) are the tensor functions of the second rank /II(£I(~' ~l) and
/II(£2(~, ~I)'~l) and of the fourth /II'iJ2(~' ~I)' ~l),which are determined as

1lI(£M, ~l) == [(Arl~, ~I) ®n(ud): V~)(x,XI»

+ [L [(AP(~, ~2) @n(uz» @ (Arl~2' ~I) @n(u2»] 4 V~) (Xl. X2, x) dI2
:I2

- ( [grad2AF(~, ~2) @ (AF(~2, ~l) ®n(u2»4V~)(Xh Xz, x)] d~2

( 2 • (3) 11+Jf2 AH(~, ~z) [grad OP(~2' ~I) ® n(Ul)] AV9 (X, X2, Xl) d~2.H +.. "

/II(£2(~, ~l) "'" n- grad' Ap(~, ~I): V~) (XI> x»

+{ -L2 [AP(~, ~2) ® n(u2»@ grad l AP(~2, ~I)] 4 V~)(Xh X2, x) d 1z

+ff2 [grad2Arl~, ~2) @ grad2Arl~z, ~d] 4 V~)(Xh X2, x)] d~2

-f
t2
AH(~' ~2) grad I grad2(M~2' ~l) A V~)(x, X2, Xl) d~2J +...

(3.20)

(3.21)

and

lll'iJ2(~, ~I) =nAH(~' ~l) V~)(x, xdB +[L AH(~2, ~I) (AF(~, ~2) @ n(u2» :V~)(X2, x, XI) dlz
:I2

+t [AH(~, ~z) grad2 OP(t=z, ~l) - AH(t=z, t=l) gradZ AP(t=, ~z)]: V~)(xz, x, XI) d~2l + ...

The term (A ': grad grad 0') reads

00

(A': grad grad 0') = 2: (A': grad grad o,(n» = IVX(g),
n=l

where the tensor function of the second rank,

IV~Z(t=, ~I) == [grad grad AH(t=, ~l): "'~) (x, xdB +[If.! [gradZ grad2
AH(gz, t=t>

@gradgrad AH(t=, t=z)] 4 "'~)(x, X2' XI) d~z]+ ...

is the only primary function in IVX(t=).
It also follows that

00

(c'lh = 2: (c'o,(n» = vxW
n==l

(3.23)

0.25)
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(3.26)

and
~

(9': grad n') = L (9': grad n,Cn» = VIX(~)
n=l

(3.27)

together with the primary functions

vI~M, ~I) == «grad (},~~, ~I) @O(O'I». "'~)(x, xI)D

[1 . m
+ (AF(~2, ~l) @0(0',): [(grad n~~, ~2) @0(0'2».1 "'8 (x, X2, XI)] dI2

1:2

-f
t2
(AF(~2, ~I) @O(O'I»: [grad2grad (},~~, ~2).1 "'~) (x, X2, XI)] d~2

L
· 2 • (3) 11.

+ t2 gradn~~'~2): [(grad nF(~2'~I)@n(0'1». "'8 (X'X2,x,)]d~2.H+""

VI~2(~' ~I) == U- grad1grad (},F(~' ~I). "'~)(x, XI)D

+[L2 grad ' AF(~2, ~I): [(grad (},F(~' ~2) @0(0'2».1 "'~)(x,X2, XI)] dI2

+f
t2
gr~d' A~~2, ~l): [grad2grad (},F(~' ~2).1 "'~) (x, X2, XI)] d~2

-f
t2

grad (},H(~' ~2): [grad1grad2(},F(~2' ~1).1 "'~)(x, X2, xd] d~2J+ ...

and

VIlM~, ~l) == Ugrad (},H(~' ~l): "'~)(x, xl)D

[1 . (3)+ AH(~2, ~I) (grad nF(~' ~2) @o (0'2».1 "'8 (X, X2, Xl) dI2
1:2

+f
t2

[grad (},H(~' ~2) @ grad2(},H(~2' ~d

- AH(~2, ~I) grad2grad (},~~, ~2)] .1"'~)(x, X2, XI) d~2J+ ...

(3.28)

(3.29)

(3.30)

We can now obtain the governing equation of the coupled mean fields, the mean displace
ment and the mean temperature, induced in the heterogeneous thermoelastic material by
substituting the equations obtained above into eqn (3.3);

(p) (ii(~» + div [(C): grad (u(~» + (9) (8(~»]+ uX(~) = - F(~)

(A): grad grad (8(~» + (c) (8(~» + 8XW = - H(~), (3.31)

where the functional uX(~) is defined as KX(~) in eqn (3.13) with the new functions .~M, ~I)'

u58i(~' ~l), .~M, ~I)' u~M, ~I), .~M, ~I) and .g;M, ~I): (i = 1,2) in place of 1~1(~' ~1)' ..., etc.
The tensor functions u~J, ••• , etc. are defined by the following formulae:

u~; = 1~; + div [II~i + Ill~;]

div u58 j = 158; + div [II58; + Ill58;]

div .~i = ICE; + div [II~; + Ill~;]

u~j = 1~; + div [II~; + Ill~;]

uCE; = 1~; + div [IICE; + mCE;]

ug;; = 19;j + div [IIg;; + mg;;]; (i = 1,2), (3.32)
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The functional 8X(~) is also determined by eqn (3.13) with the functions

1191

VI

8~i = L K~i,
K=IV

VI

8~j = L K~j,
K=IV

VI

8\8; = L K\8;,
K=IV

VI
8~;= L K~;,

K=IV

VI

8~i= L K~;'
K=IV

VI

815; = L KI5;;
K=IV

(i = I, 2) (3.33)

in place of I~j, . •• , etc.
It can be concluded from eqn (3.31) that the governing mean field equation of. the

heterogeneous thermoelastic media which are the assemblages of the linear thermoelastic solids
exhibits the nonlocal property, though each constituent is governed by the equation with
locality. The same conclusion was observed by Beran and McCoy[5] and Mazilu[24] for the
heterogeneous linear elastic material, Beran and McCoy [25) for static electric field and
Kroner [26] for the linear-dielectric heterogeneous field. We should note that the effect of the
coupling of the mean fields in eqn (3.31) is much more remarkable than that in the deterministic
eqn (2.1).

4. REDUCTION TO THE UNCOUPLED CASE

This section is concerned with the reduction of the general formulation in the preceding
section to the uncoupled case. For the sake of simplicity, we restrict our discussion to the
quasi-static case.

The problem reduces to the uncoupled one if the condition

8: gradu =0 (4.1)

holds. Under this condition, the heat conduction eqn (2.lh loses the dependence of the velocity
u. It is, therefore, clear that the correlation functions about the material constants p, C and 8
do not appear in the governing equation of mean temperature field. This means that the
functional 8X(~) in eqn (3,3Ih is represented by the terms of grad grad (6) and (8) only. It is also
obvious that it does not include the surface integrals since the heat conduction equation does
not contain the operator div. From these considerations, we can conclude that the governing
equation of mean temperature, eqn (3.3lh, reduces to

(A): grad grad (6) +(c) (8) + r [Iv1)2(~' ~d + v1)2(~' ~I)]: grad l grad! (6(~1) d~lJEI

+ r[IV~2(~' ~l) + V~2(~' ~I)] (8(~1) d~) = - H (4.2)JEI

for the uncoupled case, where the tensor functions IV1)2, v1)2, IV(f2 and v(f2 are calculated by
eliminating all the correlation functions for the material constants except A and c, and taking
account of eqn (2,17) in the expressions of IV~2, V~2, IV~2 and V~2 evaluated by eqns (3.23)
and (3.25). The explicit formulae of the tensor functions IV~2, etc. and the detailed con
siderations on eqn (4.2) were fully discussed by the same authors in Ref. [27].

For later use, we point out that 6' can be written as

together with

OM, ~l) ==IG(~, ~!) A'(Xl)) + [(I -P) Ifl G(~, ~2) [grad2grad2G(~2, ~I)

:(A'(X2) @ A'(XI)) + G(~2' ~I) (C'(X2) ~'(XI))] d~2] +... , (4.4)

G2(~' ~I) == IU(~, ~1)c'(x,)D + [(1 - P) Ifl G(~, ~)) [grad2grad2G(~2, ~))

:(A '(X2) C'(Xl)) + G(~2' ~I) (C'(X2) c'(x)))] d~2] +...
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Equation (4.3) is obtained by the direct substitution of eqns (4.1) and (2.17) into eqn (3.11). It is
worth noting that eqn (4.3) can be rewritten as

8'(~) = fI (~, () (8({» (4.5)

symbolically, where fI(~, () represents the integro-differential operator determined by eqn (4.3).
The " which stands for the argument of the operator, means (x, t).

Below, we limit our attention to the equilibrium equation. Our purpose is to derive the
explicit form of the equilibrium equation

div [(C): (y) + (8) (8)] + uX(~) = - F (4.6)

and to consider the behavior of the materials governed by it. The y in eqn (4.6) indicates the
strain tensor defined by

y = 1[grad 0 + (grad O)T].

The equations for (D) and 0', eqns (3.3) and (3.4), now reduce to

(4.7)

and
div [(C): (y) + (8X8) + (C': 'Y') + fi(~, ()(8({»] + F = 0

div [(C): y' + C'; (y) + (1- P) (C': y') + fi(~, ,) (8({»] = 0,

(4.8)

(4.9)

where the following integro-differential operators are introduced:

fi(~, ,) == (8'(x)rr(t, '»,

fi(t, () == (8(l[»rr(~, () + 8'(x)fI(~, () - (8'(x)rr(t, (» + 8'(x)I(~, t). (4.10)

The operator I(~, () in the above equation means

A(~) = I(~, () A«()

for any arbitrary tensor A(~), while the juxtaposition AfI is defined as

(4.11)

AfI(8) == I, [(A ® OM, (»: grad grad (8({» + A02(t, () (8«(»] d'. (4.12)

when (8) is operated. And then its average (AfI) implies.

(AfI) (8) == I, [(A ® Ot(t, (»: grad grad (8({» + (A 02(t, (» (8({»] d'. (4.13)

Following the same type of disl;ussions in the preceding section, we can calculate (C': y') by
making use of the solution y' of eqn (4.7). The result is

(C ; 'r) = f ~t(~, tl): (y(tt» dI tJ'11

+L~2(~, ~I): (Y(~I» d~1 + IIM, ,) (8({»+ fi2(~' ()(8({», (4.14)
fl

where the tensor functions ~M, ~t) and ~2(~' ~t) are given by

~I(t, tl) ali I(C§(~, ~I) ® n(Ut»••gl(x, X2»)

+ 11'12 (C§(~, tt) ® n(U2».:1[(C§(t2' tl) ® n(Ut».:111tg1(x, X2, XI)] d~2

-1 grad2C§(t, ~2).:1[(C§(t2' ~I) ® n(Ut».:111tg1(x, X2, XI)] d~2J+ .. '.
t2
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5!h(t, tl) == (-gradl CU(t, tl)A1'g)(X, XI»)

+ (- { (CO(t, t2) ® 0(0'2»4[gradl CO(t2, tl)49g)(x, X2, x.)] dI2JI.2

+I
f2

grad2CO(t, t2) 4 [gradI t2, tl) 4 ,.,gl(X, X2, XI)] dt2l + ...

In the above equations, the modified Green's tensor
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(4.15)

(4.16)

IT2(t, () == ( -1 gradlCO(t, tl)4(C'(x)IT(t, ()] (9({» dtl]
fl

+ (1 [- {(CU(t, t2) ® 0(0'2»A{gradl ~(t2, tl)A«C'(x) ® C'(X2»IT(t, m} dI2
ft JI.2

+I
f2

grad2~(t, t2)A{gradl CU(t2, tl)A «C'(x) ® C'(X2» ll(t, m} dt2] dt. l + ...

is introduced. And the operators 11M, ,) and ll2(t, () are defined by the following formulae:

III(t, ,) == ({ CO(t, tl) ® 0(0'1» 4 (C'(x) ll(tt. m dIllJI.1

+ ({ [{ (CO(t, t2) ® 0(0'2)A{(CO(t2, tl) ®;0(0'2» A «C'(x) ® C'(X2» IT (tt. (»} dI2JI. t JI.2

-I
f2

grad2CO(t, t2) A {(CO(t2' tl) ® 0(0'1» A «C'(x) ® C'(X2» ll(t, m} dt2] dIll + ... ,

(4.17)

The tensor functions l8M, tl) and l82(t, tl) defined by eqn (4.15) correspond to the ones which
are determined by retaining the correlation functions of C only in the expressions of nl8l(t, tl)
and nl82(t, td, eqns (3.17) and (3.18), and bearing in mind of eqn (2.17).

Substitution of eqn (4.14) into eqn (4.8) leads the final governing equation of mean fields

div [(C): (y) + (8)(9) + { l8M,tl):(y(tl»dI t + {l82(t,tl):(y(tl»dttJI.\ J~
+ 11M, {)(9(m+ II2(t, m] + F= 0 (4.18)

where
(4.19)

Equations (4.18) and (4.2) constitute a set of the field equations for the uncoupled mean
fields (y) and (6) induced in the heterogeneous thermoelastic materials. We emphasize that the
term 11M, ,) (6({»+ II2(t, ,) (6({» in eqn (4.18) may be regarded as a function of t which is
independent of the mechanical history of the material since the field (6) is determined
independently of (y), and Green's tensor CU(t, tl) is a prescribed function.

We postulate here the following assumptions in order to take account of the behavior of the
actual materials. The tensor functions l81(t, tl) and l82(t, tl) are assumed to be negligibly small
when the distance Ix - xII is greater than the characteristic length I associated with the statistical
variations of C. This means that the only values evaluated at the points XI which enter the
region Ix - xd ~ I contribute to the i~tegration. We further postulate that the variation of the
mean field is so slow that (y(xt. t l»can be expanded in Taylor series about the point x, i.e.

(Y(Xj, tl» = (y(x, t» + (XI - x). grad (y(x, tl»+ ...

Under these assumptions, eqn (4.18) is reduced to

div(O')+F=O,
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(U(X, t) = (C): (y(x, t» +(0) (O(x, t)) + 'lTI(X, t, ,) (OW) + 'lT2(X, t, ()(OW)

+1£j(l)(x, t, t I): (y(x, td) dt1+1£j(2)(X, t, tI). grad (y(x, t I» dt1+ .. "
II II

(4.20)

(4.21)

where (u) indicates the mean stress field, while the tensor functions gjJ(n)(x, t, ttl; (n = 1,2, ... )
are defined by

£j(l)(x, t, t l ) =f IBM, ~I) du, + r IB2(~' ~I) dx,
9', J'V]

£j(2)(X, t, t l ) =f @M, ~l)®(XI - x) dUI + ( IB2(~' ~I)®(XI - x) dXI ....
9'] J'V]

Though U in (u) is the same symbol as the coordinates on the body surface Ui, no confusion
will come frum the usage. The notations Y'j and 'Vi in the above equation mean the restricted
regions

Y'i ={ud IU - ud ~ f}

'Vi ={xd Ix - xjl ~ f}.

The operators 'lTl(X, t, ,) and 'lT2(X, t, ,) are defined as ones which are calculated by restricting
the spatial integrals with respect to Uj and Xi within Y'j and 'Vi in the definitions of IIM, ,) and
r2(~, '), eqns (4.17) and (4.19).

Equation (4.20)z may be regarded as the constitutive equation for the mean fields of the
heterogeneous thermoelastic media. However, we should note that the equation includes
the effects of the shape of the material and the boundary conditions through Green's function. This
shows that, as Beran and McCoy [5] pointed out, eqn (4.20)z does not correspond to the constitutive
equation employed in the rational continuum mechanics [28].

The further discussions on the relation (4.20)2 will be made in a sequel paper by the same
authors [29]. In that paper they will reveal that the integral on the mean strain are no more than
a pretense.

5. CONCLUDING REMARKS

A formulation was proposed on the thermomechanical behavior of the heterogeneous linear
thermoelastic media. The governing equation of the coupled mean fields induced in the material
was derived. It was shown that the governing equation exhibited the nonlocality though each
constituent was governed by the local law.

The reduced uncoupled case was examined in detail. The relation of the mean stress, the
mean strain and the mean temperature was derived when the acceleration term was dis
regarded.
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APPENDIX
It follows from eqn (3.10) that

(C': grad U,(2)) = f. grad 0rt€, €I). div' [( grad' 0rt€" €2). div2(1Jtg)(x, XI' x2): grad2(U(€2»)) d€2] d€,
~ Jb .

= ( grad 0rt€, t'llII div l d(t', t't) d€, (AI)JE1

where the following tensor is defined:

d(€, t'1) = f. grad l 0rtt'l, t'2). div2(1Jtg l(x, XI' X2): grad2(U(t'2»)) dt'2'
E2

The symbol. in the above equations stands for an operator of the summation over the repeated three indices,

Use of Gauss' theorem leads eqn (AI) to

(C': grad U'(21) = f. [divl(grad 0F(t', t't) D d(t', t',)) - grad' grad l 0F(t', t',). d(t', t'1)] dt'l
EI

(A2)

=1grad 0rt€, t'1). (d(t', t'1)'D(UI)) dI I- ( gradl grad 0rtt', t'1). d(€, t'1) dt'I' (A3)
~ ~

where we have introduced the following operators:

[ADB]

[A.B]

1= A-- iikE. . ikjl"

=A .. ,jklE. .Ikjl

Equation (A2) is also rewritten by using Gauss' theorem to

d(t', t'1) =1gradl 0F(t'I' t'2). [1Jtg)(x, XI' x2): grad2(U(t'2))) . D(U2)] dI2
:1:2

- IE> grad2grad I0rtt'" t'2). [1Jtg)(x, XI' X2) :grad2(U(t'2»)] dt'2'

Substitution of eqn (A4) into eqn (A3) and rearrangement of terms give the final form of (C': grad U,(2)).

where the tensors I118\2)(t', t') and I118~21(t', t'1) are defined by

(A4)

(AS)

I1181121(t', t'1) = ( (grad 0rtt', t'2)@D(U2»/::" [(grad20rtt'2' t'1)@D(U,))/::" 1Jtg)(x, X2' x,)] dI2 (A6)
J:l:2

-t grad2grad 0Flt', t'2)/::"[(grad20Flt'2' t'1)@D(UI)/::".C(3)(X, X2' XI)) dt'2
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(A7)

11\8~)(~. ~,l '" - L, (grad n.,(~. ~2l ® n(0'2)) /::, [grad' grad2np(~2' ~,l /::, ,,~J(x. X2' x,)] dI.2

+In grad2grad fiP(€. ~2l /::, [grad' grad2np(~2' €,l /::, "W(x. X2' x,l] d~2'

Comparison ofeqn (A6) and (A7) with eqns (3.18) and (3.19) reveals thatthe tensors I/\8,12l(€. ~I) and I/\82(2)(~. ~,) correspond to
the second term is the infinite series.


